A New Proof of Gromov’s Theorem on Groups of Polynomial Growth

نویسنده

  • BRUCE KLEINER
چکیده

We give a proof of Gromov’s theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. The proof does not rely on the Montgomery-ZippinYamabe structure theory of locally compact groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Kleiner’s Proof of Gromov’s Polynomial Growth Theorem

We present and explain Kleiner’s new proof of Gromov’s polynomial growth [Kle07] theorem which avoids the use of Montgomery-Zippin theory. We also stress the connection to Shalom’s property HFD. No originality is claimed. These notes have not yet been proofread or polished.

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

Branching Program Uniformization, Rewriting Lower Bounds, and Geometric Group Theory

Geometric group theory is the study of the relationship between the algebraic, geometric, and combinatorial properties of finitely generated groups. Here, we add to the dictionary of correspondences between geometric group theory and computational complexity. We then use these correspondences to establish limitations on certain models of computation. In particular, we establish a connection bet...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

Solvable Groups of Exponential Growth and Hnn Extensions

An extraordinary theorem of Gromov, [4], characterizes the finitely generated groups of polynomial growth; a group has polynomial growth iff it is nilpotent by finite. This theorem went a long way from its roots in the class of discrete subgroups of solvable Lie groups. Wolf, [11], proved that a polycyclic group of polynomial growth is nilpotent by finite. This theorem is primarily about linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007